Design of 3D Controller Using Nanocracking Structure-Based Stretchable Strain Sensor

Author:

Yang Seongjin12ORCID,Kim Minjae23,Hong Seong Kyung2,Kim Suhyeon2,Chung Wan Kyun2,Lim Geunbae2,Jeon Hyungkook24ORCID

Affiliation:

1. Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea

2. Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea

3. Department of Physical Medicine & Rehabilitation, Northwestern University, 710 N. Lake Shore Dr., Chicago, IL 60611, USA

4. Department of Manufacturing Systems and Design Engineering (MSDE), Seoul National University of Science and Technology (SEOULTECH), 232 Gongneung-Ro, Nowon-Gu, Seoul 01811, Republic of Korea

Abstract

In this study, we introduce a novel design for a three-dimensional (3D) controller, which incorporates the omni-purpose stretchable strain sensor (OPSS sensor). This sensor exhibits both remarkable sensitivity, with a gauge factor of approximately 30, and an extensive working range, accommodating strain up to 150%, thereby enabling accurate 3D motion sensing. The 3D controller is structured such that its triaxial motion can be discerned independently along the X, Y, and Z axes by quantifying the deformation of the controller through multiple OPSS sensors affixed to its surface. To ensure precise and real-time 3D motion sensing, a machine learning-based data analysis technique was implemented for the effective interpretation of the multiple sensor signals. The outcomes reveal that the resistance-based sensors successfully and accurately track the 3D controller’s motion. We believe that this innovative design holds the potential to augment the performance of 3D motion sensing devices across a diverse range of applications, encompassing gaming, virtual reality, and robotics.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3