Anomaly Detection for Charging Voltage Profiles in Battery Cells in an Energy Storage Station Based on Robust Principal Component Analysis

Author:

Yu Jiaqi1,Guo Yanjie1,Zhang Wenjie2

Affiliation:

1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China

2. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030000, China

Abstract

Lithium-ion batteries, with their high energy density, long cycle life, and non-polluting advantages, are widely used in energy storage stations. Connecting lithium batteries in series to form a battery pack can achieve the required capacity and voltage. However, as the batteries are used for extended periods, some individual cells in the battery pack may experience abnormal failures, affecting the performance and safety of the battery pack. At the same time, as batteries operate in complex environments, the data collected by sensors are susceptible to random noise and drift interference, which can affect the accuracy of anomaly detection in individual battery cells. In order to solve this problem, this article proposes an anomaly detection method for battery cells based on Robust Principal Component Analysis (RPCA), taking the historical operation and maintenance data of a large-scale battery pack from an energy storage station as the research subject. Firstly, theRPCA is used to denoise the observed voltage data of the battery cells to an extreme degree, obtaining a baseline charging state curve for a cell consistency assessment. This also solves the problem of sensor outputs being affected by random noise. To further detect and identify abnormal battery cells, the RPCA is used to extract outlier components. Based on the Average Deviation-3σ principle and by utilizing Gaussian distribution probability characteristics, battery cells are conducted to screen, and the serial numbers of the anomaly cells are obtained. Finally, the effectiveness and accuracy of this anomaly detection method for battery cells are compared and verified through different statistical distributions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3