Authenticated Multicast in Tiny Networks via an Extremely Low-Bandwidth Medium

Author:

Kutyłowski Mirosław1ORCID,Cinal Adrian1ORCID,Kubiak Przemysław1ORCID,Korniienko Denys2

Affiliation:

1. NASK National Research Institute, Kolska 12, 01-045 Warsaw, Poland

2. Faculty of Computer Science and Telecommunication, Wrocław University of Science and Technology, 50-370 Wrocław, Poland

Abstract

We consider authenticating multicast messages in the case of extremely narrow communication channels, such as underwater acoustic communication, with devices such as mobile sensors creating a self-organizing autonomous network. Channel characteristics in this scenario prevent the application of digital signatures (and asymmetric cryptography in general), as it would consume too much of the available bandwidth. As communication is relatively sparse, standard symmetric methods such as TESLA have limited application in this scenario as well. Driven by real-world requirements, we focus on tiny networks of only a few nodes. This paper discusses two issues: (a) strategies of key predistribution enabling flexible creation of multicast groups; (b) authenticating multicast messages in a way that prevents an attacker impersonating the sender by subverting one or more receiver nodes and learning the symmetric keys stored by these nodes. For tiny networks, we show that scalable and asymptotically efficient solutions might be useless, and that specially tailored combinatorial approaches may confer some advantage.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3