Exploring Autism Spectrum Disorder: A Comparative Study of Traditional Classifiers and Deep Learning Classifiers to Analyze Functional Connectivity Measures from a Multicenter Dataset

Author:

Mainas Francesca123,Golosio Bruno12ORCID,Retico Alessandra4ORCID,Oliva Piernicola25ORCID

Affiliation:

1. Department of Physics, University of Cagliari, 09042 Monserrato, Italy

2. National Institute for Nuclear Physics (INFN), Cagliari Division, 09042 Monserrato, Italy

3. Department of Informatic, University of Pisa, 56127 Pisa, Italy

4. National Institute for Nuclear Physics (INFN), Pisa Division, 56127 Pisa, Italy

5. Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy

Abstract

The investigation of functional magnetic resonance imaging (fMRI) data with traditional machine learning (ML) and deep learning (DL) classifiers has been widely used to study autism spectrum disorders (ASDs). This condition is characterized by symptoms that affect the individual’s behavioral aspects and social relationships. Early diagnosis is crucial for intervention, but the complexity of ASD poses challenges for the development of effective treatments. This study compares traditional ML and DL classifiers in the analysis of tabular data, in particular, functional connectivity measures obtained from the time series of a public multicenter dataset, and evaluates whether the features that contribute most to the classification task vary depending on the classifier used. Specifically, Support Vector Machine (SVM) classifiers, with both linear and radial basis function (RBF) kernels, and Extreme Gradient Boosting (XGBoost) classifiers are compared against the TabNet classifier (a DL architecture customized for tabular data analysis) and a Multi Layer Perceptron (MLP). The findings suggest that DL classifiers may not be optimal for the type of data analyzed, as their performance trails behind that of standard classifiers. Among the latter, SVMs outperform the other classifiers with an AUC of around 75%, whereas the best performances of TabNet and MLP reach 65% and 71% at most, respectively. Furthermore, the analysis of the feature importance showed that the brain regions that contribute the most to the classification task are those primarily responsible for sensory and spatial perception, as well as attention modulation, which is known to be altered in ASDs.

Funder

INFN-CSN5

European Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3