The Effect of Diagenetic Modifications on Porosity Development in the Upper Ordovician to Lower Silurian Wufeng and Longmaxi Formations, Southeast Sichuan Basin, China

Author:

Dong Tian123,He Zhiliang13,Hu Kun3,Gao Jian12,Li Shuangjian12,Wang Chuan3

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Efficient Development, Beijing 102206, China

2. SINOPEC Key Laboratory of Geology and Resources in Deep Stratum, Beijing 102206, China

3. School of Earth Resources, China University of Geosciences, Wuhan 430074, China

Abstract

Diagenesis has been demonstrated to significantly affect porosity development in shale reservoirs, however, the effect of diagenetic modifications on shale pore structures is still unclear. For clarifying this issue, this paper focuses on the Upper Ordovician to Lower Silurian Wufeng and Longmaxi shales, which are the only commercially gas-produced shale plays in China. This study aims to reveal the influence of diagenetic alterations on the WF-LMX shale reservoir quality by integrating total organic carbon (TOC) content, X-ray diffraction (XRD), low-temperature gas (N2) and carbon dioxide (CO2) adsorption experiments, field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDS), and cathodoluminescence (CL) analyses. Three major shale lithofacies were identified, mainly including siliceous, siliceous–argillaceous mixed, and argillaceous shale; the siliceous shale has a relatively high TOC content. The organic pores, intergranular pores, intragranular pores, and fractures are generally developed in the WF-LMX shales. The pore volume (PV) and specific surface area (SSA) of micropores, mesopores, and macropores of siliceous shales are higher than those of mixed shales and argillaceous shales. The TOC content has a strongly positive correlation with PV and SSA for micropores and mesopores. After combustion, the PV and SSA of micropores and mesopores were decreased, whereas the PV and SSA of macropore were significantly increased. In the siliceous shale, organic pore is the dominant pore type due to the fact that a large amount of authigenic microcrystalline quartz aggregates can protect organic pores from compaction. The argillaceous shale has high clay and low TOC content, and the dominant pore type is pores between clay flakes. The siliceous shale has a relatively high TOC content, large PV and SSA, and so are the dessert lithofacies for shale gas exploration.

Funder

SINOPEC Key Laboratory of Geology and Resources in Deep Stratum Foundation

National Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3