Experimental Analysis and Design of 3D-Printed Polymer Elliptical Tubes in Compression

Author:

McCann Finian1ORCID,Rossi Federico2,Sultan Shahzada Danyal2

Affiliation:

1. School of Architecture, Building and Civil Engineering, Loughborough University, Loughborough LE11 3TU, UK

2. School of the Built Environment and Architecture, London South Bank University, London SE1 0AA, UK

Abstract

Local failure modes occurring in 3D-printed polymer elliptical section tubes in compression are investigated in the present study via a series of experiments, with the results compared to existing design proposals for slender steel analogues. Polylactic acid (PLA) and acrylonitrile butadiene styrene material specimens (ABS) have been printed in three orthogonal layering orientations, and tested in tension and compression to determine orthotropic material properties including strength, elastic modulus, failure strains and Poisson’s ratio. Next, twenty-four 3D-printed elliptical cross-section tubes are tested in compression, with the polymer material, cross-sectional aspect ratio and tube wall thickness varied across the set. Results including the load-deflection behaviour, longitudinal strains, failure modes and ultimate loads are discussed. A design method formulated previously for slender steel elliptical hollow sections in compression is adapted for use with the 3D-printed polymer specimens. Upon appropriate rescaling of the design parameters, safe-sided and accurate predictions are provided by the design method for the compressive resistance of the PLA and ABS elliptical specimens, thus validating its application to cross-sections in materials other than carbon steel.

Funder

UK Manufacturing Symbiosis Network Plus

Digital Architecture and Robotics Laboratory and the Division of Civil and Building Services Engineering within the School of the Built Environment and Architecture at London South Bank University

Loughborough University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3