Implementation of a Two-Dimensional Finite-Element Fatigue Damage Model with Peridynamics to Simulate Crack Growth in a Compact Tension Specimen

Author:

Mansfield Kyle12,Callahan Levee2,Xia Ting2,Gau Jenn-Terng2,Tan Jifu3ORCID

Affiliation:

1. John Deere Product Development Center, 1800 158th Street North, East Moline, IL 61244, USA

2. Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL 60115, USA

3. Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, USA

Abstract

The traditional finite element method (FEM) has limitations in accurately modeling crack propagation. Peridynamics, a nonlocal extension of the classical continuum theory, provides an alternative approach to remedy the limitations of the FEM but with a higher computational cost. In this paper, a peridynamic bond-based fatigue damage model is developed and incorporated into a commercial finite-element software (ABAQUS 2017) via user subroutines. Model-predicted results including the crack path spatial position and the damage accumulation rate were validated against empirical data. The predicted crack growth as a function of loading cycle and crack trajectory showed good agreement with the experimental data over 200,000 loading cycles. Therefore, the integration of the peridynamic bond-based fatigue damage model into existing FEM software provides an economical means to simulate complex fracture behaviors, such as crack growth, in a compact tension specimen examined in this paper.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3