An IoT Healthcare System Based on Fog Computing and Data Mining: A Diabetic Use Case

Author:

Karimi Azin1,Razi Nazila2ORCID,Rezazadeh Javad2ORCID

Affiliation:

1. Faculty of IT, Azad University of North Tehran Branch, Tehran 1876, Iran

2. Faculty of IT, Crown Institute of Higher Education (CIHE), Sydney 2060, Australia

Abstract

The advent of the Internet of Things (IoT) has revolutionized numerous sectors, with healthcare being particularly significant. Despite extensive studies addressing healthcare challenges, two persist: (1) the need for the swift detection of abnormalities in patients under medical care and timely notifications to patients or caregivers and (2) the accurate diagnosis of abnormalities tailored to the patient’s condition. Addressing these challenges, numerous studies have focused on developing healthcare systems, leveraging technologies like edge computing, which plays a pivotal role in enhancing system efficiency. Fog computing, situated at the edge of network hierarchies, leverages multiple nodes to expedite system processes. Furthermore, the wealth of data generated by sensors connected to patients presents invaluable insights for optimizing medical care. Data mining techniques, in this context, offer a means to enhance healthcare system performance by refining abnormality notifications and disease analysis. In this study, we present a system utilizing the K-Nearest Neighbor (KNN) algorithm and Raspberry Pi microcomputer within the fog layer for a diabetic patient data analysis. The KNN algorithm, trained on historical patient data, facilitates the real-time assessment of patient conditions based on past vital signs. A simulation using an IBM SPSS dataset and real-world testing on a diabetic patient demonstrate the system’s efficacy. The results manifest in prompt alerts or normal notifications, illustrating the system’s potential for enhancing patient care in healthcare settings.

Funder

CROWN INSTITUTE of HIGHER EDUCATION, Sydney, Australia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3