Distributed Cooperative Dispatch Method of Distribution Network with District Heat Network and Battery Energy Storage System Considering Flexible Regulation Capability

Author:

Fu Xin1,Yu Shunjiang2ORCID,He Qibo1,Wang Long1,Chen Changming2,Niu Chengeng2,Lin Zhenzhi2

Affiliation:

1. State Grid Wuxi Power Supply Company of Jiangsu Electric Power Co., Ltd., Wuxi 214061, China

2. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

Flexible resources, including district heat networks (DHN) and battery energy storage systems (BESS), can provide flexible regulation capability for distribution networks (DN), thereby increasing the absorption capacity for renewable energy. In order to improve the operation economy of DN and ensure the information privacy of different operators, a distributed cooperative dispatch method of DN with DHN and BESS considering flexible regulation capability is proposed. First, a distributed cooperative dispatch framework of DN-DHN-BESS is constructed. Then, an optimal dispatch model of DHN under constant flow-variable temperature control strategy is established in order to utilize the heat storage capacity to provide flexible regulation capability for DN. Next, the optimal dispatch models of BESS and DN are established with the objective of minimizing the operation cost, respectively. Finally, a solution method based on the alternating direction multiplier method of distributed cooperative dispatch for DN-DHN-BESS is proposed. Case studies are performed on a system consisting of a 33-node DN and a 44-node DHN, and simulation results demonstrate that the proposed method differs from the centralized dispatch method by only 0.52% in the total system cost, and the proposed method reduces the total system cost by 34.5% compared to that of the independent dispatch method.

Funder

Science and Technology Project of State Grid Jiangsu Electric Power Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3