A Multi-Organ Segmentation Network Based on Densely Connected RL-Unet

Author:

Zhang Qirui1,Xu Bing1ORCID,Liu Hu1,Zhang Yu1,Yu Zhiqiang1

Affiliation:

1. School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Abstract

The convolutional neural network (CNN) has been widely applied in medical image segmentation due to its outstanding nonlinear expression ability. However, applications of CNN are often limited by the receptive field, preventing it from modeling global dependencies. The recently proposed transformer architecture, which uses a self-attention mechanism to model global context relationships, has achieved promising results. Swin-Unet is a Unet-like simple transformer semantic segmentation network that combines the dominant feature of both the transformer and Unet. Even so, Swin-Unet has some limitations, such as only learning single-scale contextual features, and it lacks inductive bias and effective multi-scale feature selection for processing local information. To solve these problems, the Residual Local induction bias-Unet (RL-Unet) algorithm is proposed in this paper. First, the algorithm introduces a local induction bias module into the RLSwin-Transformer module and changes the multi-layer perceptron (MLP) into a residual multi-layer perceptron (Res-MLP) module to model local and remote dependencies more effectively and reduce feature loss. Second, a new densely connected double up-sampling module is designed, which can further integrate multi-scale features and improve the segmentation accuracy of the target region. Third, a novel loss function is proposed that can significantly enhance the performance of multiple scales segmentation and the segmentation results for small targets. Finally, experiments were conducted using four datasets: Synapse, BraTS2021, ACDC, and BUSI. The results show that the performance of RL-Unet is better than that of Unet, Swin-Unet, R2U-Net, Attention-Unet, and other algorithms. Compared with them, RL-Unet produces significantly a lower Hausdorff Distance at 95% threshold (HD95) and comparable Dice Similarity Coefficient (DSC) results. Additionally, it exhibits higher accuracy in segmenting small targets.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3