1D-CLANet: A Novel Network for NLoS Classification in UWB Indoor Positioning System

Author:

Wang Qiu12ORCID,Chen Mingsong12ORCID,Liu Jiajie12,Lin Yongcheng23ORCID,Li Kai23ORCID,Yan Xin12,Zhang Chizhou12

Affiliation:

1. Light Alloy Research Institute, Central South University, Changsha 410083, China

2. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Changsha 410083, China

3. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

Abstract

Ultra-Wideband (UWB) technology is crucial for indoor localization systems due to its high accuracy and robustness in multipath environments. However, Non-Line-of-Sight (NLoS) conditions can cause UWB signal distortion, significantly reducing positioning accuracy. Thus, distinguishing between NLoS and LoS scenarios and mitigating positioning errors is crucial for enhancing UWB system performance. This research proposes a novel 1D-ConvLSTM-Attention network (1D-CLANet) for extracting UWB temporal channel impulse response (CIR) features and identifying NLoS scenarios. The model combines the convolutional neural network (CNN) and Long Short-Term memory (LSTM) architectures to extract temporal CIR features and introduces the Squeeze-and-Excitation (SE) attention mechanism to enhance critical features. Integrating SE attention with LSTM outputs boosts the model’s ability to differentiate between various NLoS categories. Experimental results show that the proposed 1D-CLANet with SE attention achieves superior performance in differentiating multiple NLoS scenarios with limited computational resources, attaining an accuracy of 95.58%. It outperforms other attention mechanisms and the version of 1D-CLANet without attention. Compared to advanced methods, the SE-enhanced 1D-CLANet significantly improves the ability to distinguish between LoS and similar NLoS scenarios, such as human obstructions, enhancing overall recognition accuracy in complex environments.

Funder

National Key Research and Development Program of China, National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3