Research on Indirect Influence-Line Identification Methods in the Dynamic Response of Vehicles Crossing Bridges

Author:

Zhou Yu123ORCID,Shi Yingdi1,Di Shengkui2,Han Shuo1,Wang Jingtang1

Affiliation:

1. School of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China

2. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

3. National and Local Joint Engineering Laboratory of Building Health Monitoring and Disaster Prevention Technology, Anhui Jianzhu University, Hefei 230601, China

Abstract

The bridge influence line can effectively reflect its overall structural stiffness, and it has been used in the studies of safety assessment, model updating, and the dynamic weighing of bridges. To accurately obtain the influence line of a bridge, an Empirical and Variational Mixed Modal Decomposition (E-VMD) method is used to remove the dynamic component from the vehicle-induced deflection response of a bridge, which requires the preset fundamental frequency of the structure to be used as the cutoff frequency for the intrinsic modal decomposition operation. However, the true fundamental frequency is often obtained from the picker, and the testing process requires the interruption of traffic to carry out the mode decomposition. To realize the rapid testing of the influence lines of bridges, a new method of indirectly identifying the operational modal frequency and deflection influence lines of bridge structures from the axle dynamic response is proposed as an example of cable-stayed bridge structures. Based on the energy method, an analytical solution of the first-order frequency of vertical bending is obtained for a short-tower cable-stayed bridge, which can be used as the initial base frequency to roughly measure the deflection influence line of the cable-stayed bridge. The residual difference between the deflection response and the roughly measured influence line under the excitation of the vehicle is operated by Fast Fourier Transform, from which the operational fundamental frequency identification of the bridge is realized. Using the operational fundamental frequency as the cutoff frequency and comparing the influence-line identification equations, the empirical variational mixed modal decomposition, and the Tikhonov regularization to establish a more accurate identification of the deflection influence line, the deflection influence line is finally identified. The accuracy and practicality of the proposed method are verified by real cable-stayed bridge engineering cases. The results show that the relative error between the recognized bridge fundamental frequency and the measured fundamental frequency is 0.32%, and the relative error of the recognized deflection influence line is 0.83%. The identification value of the deflection influence line has a certain precision.

Funder

Natural Science Foundation youth project of Anhui Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3