Strengthening Polymer Concrete with Carbon and Basalt Fibres

Author:

Akzharkyn Igbayeva1,Yelemessov Kassym1ORCID,Baskanbayeva Dinara1,Martyushev Nikita V.2ORCID,Skeeba Vadim Y.3ORCID,Konyukhov Vladimir Yu.4ORCID,Oparina Tatiana A.4

Affiliation:

1. Institute of Energy and Mechanical Engineering, Satbayev University, Almaty 050013, Kazakhstan

2. Department of Advanced Technologies, Tomsk Polytechnic University, Tomsk 634050, Russia

3. Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk 630073, Russia

4. Department of Automation and Control, Irkutsk National Research Technical University, Irkutsk 664074, Russia

Abstract

To date, composite materials, such as polymer concrete, have found wide application in various industries due to their unique properties combining high strength, resistance to aggressive media and durability. Improving the performance characteristics of polymer concrete is an important task aimed at expanding the areas of its application. One of the promising methods of increasing the strength of this material is the use of various fillers. In this paper, the effect of fillers, based on carbon and basalt fibres, on the mechanical properties of polymer concrete was investigated. The polymer concrete was made of the following components: rubble stone, sand, quartz flour and polyester resin. During the experimental work, the amount of carbon and basalt fibres in the polymer concrete mixture varied from 0 to 6%. Bending and compressive strength tests showed that the addition of carbon and basalt fibres increased these properties. The highest bending and compressive strengths were achieved when carbon fibre contents were up to 1.5%, while basalt fibres provided the highest strengths in the case of around 2%. These results confirmed that carbon fibres had a higher efficiency in strengthening polymer concrete compared to that of basalt fibres. This could be explained by the fact that carbon fibres had a higher tensile strength and modulus of elasticity, which allowed them to better redistribute loads within the composite material. The fibre length for carbon fibre, which gave the maximum increase in properties, was 10–15 mm. For basalt fibre, the maximum bending strength was reached at 20 mm and compressive strength at 10 mm. Increasing the content of carbon fibre above 2% and basalt fibre above 1.5% did not give further increase in mechanical properties. In conclusion, it could be stated that the use of carbon fibres as fillers offered significant advantages in strengthening polymer concrete, opening up opportunities for its use in more demanding conditions and in a wider range of industrial applications.

Funder

Ministry of Science and Higher Education of the Republic of Kazakhstan

Publisher

MDPI AG

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3