Recurrent and Concurrent Prediction of Longitudinal Progression of Stargardt Atrophy and Geographic Atrophy towards Comparative Performance on Optical Coherence Tomography as on Fundus Autofluorescence

Author:

Mishra Zubin12,Wang Ziyuan Chris13,Xu Emily1,Xu Sophia1ORCID,Majid Iyad1ORCID,Sadda SriniVas R.13,Hu Zhihong Jewel1ORCID

Affiliation:

1. Doheny Image Analysis Laboratory, Doheny Eye Institute, 150 North Orange Grove Blvd, Pasadena, CA 91103, USA

2. School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA

3. Department of Computer Science, The University of California, Los Angeles, CA 90095, USA

Abstract

Stargardt atrophy and geographic atrophy (GA) represent pivotal endpoints in FDA-approved clinical trials. Predicting atrophy progression is crucial for evaluating drug efficacy. Fundus autofluorescence (FAF), the standard 2D imaging modality in these trials, has limitations in patient comfort. In contrast, spectral-domain optical coherence tomography (SD-OCT), a 3D imaging modality, is more patient friendly but suffers from lower image quality. This study has two primary objectives: (1) develop an efficient predictive modeling for the generation of future FAF images and prediction of future Stargardt atrophic (as well as GA) regions and (2) develop an efficient predictive modeling with advanced 3D OCT features at ellipsoid zone (EZ) for the comparative performance in the generation of future enface EZ maps and prediction of future Stargardt atrophic regions on OCT as on FAF. To achieve these goals, we propose two deep neural networks (termed ReConNet and ReConNet-Ensemble) with recurrent learning units (long short-term memory, LSTM) integrating with a convolutional neural network (CNN) encoder–decoder architecture and concurrent learning units integrated by ensemble/multiple recurrent learning channels. The ReConNet, which incorporates LSTM connections with CNN, is developed for the first goal on longitudinal FAF. The ReConNet-Ensemble, which incorporates multiple recurrent learning channels based on enhanced EZ enface maps to capture higher-order inherent OCT EZ features, is developed for the second goal on longitudinal OCT. Using FAF images at months 0, 6, and 12 to predict atrophy at month 18, the ReConNet achieved mean (±standard deviation, SD) and median Dice coefficients of 0.895 (±0.086) and 0.922 for Stargardt atrophy and 0.864 (±0.113) and 0.893 for GA. Using SD-OCT images at months 0 and 6 to predict atrophy at month 12, the ReConNet-Ensemble achieved mean and median Dice coefficients of 0.882 (±0.101) and 0.906 for Stargardt atrophy. The prediction performance on OCT images is comparably good to that on FAF. These results underscore the potential of SD-OCT for efficient and practical assessment of atrophy progression in clinical trials and retina clinics, complementing or surpassing the widely used FAF imaging technique.

Funder

National Eye Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3