Improved Subsynchronous Oscillation Parameter Identification Based on Eigensystem Realization Algorithm

Author:

Chen Gang12ORCID,Zeng Xueyang12,Liu Yilin3,Zhang Fang3,Shi Huabo12

Affiliation:

1. State Grid Sichuan Electrical Power Research Institute, Chengdu 610041, China

2. Power Internet of Things Key Laboratory of Sichuan Province, Chengdu 610041, China

3. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

Subsynchronous oscillation (SSO) is the resonance between a new energy generator set and a weak power grid, and the resonance frequency is usually the sub-/super-synchronous frequency. The eigensystem realization algorithm (ERA) is a classic algorithm for extracting modal parameters based on matrix decomposition. By leveraging the ERA’s simplicity and low computational cost, an enhanced methodology for identifying the key parameters of SSO is introduced. The enhanced algorithm realizes SSO angular frequency extraction by constructing an angular frequency fitting equation, enabling efficient identification of SSO parameters using only a 200 ms synchrophasor sequence. In the process of identification, the fitting-based ERA effectively addresses the limitation of the existing ERA. The accuracy of SSO parameter identification is improved, thereby realizing that SSO parameter identification can be carried out using a 200 ms data window. The fitting-based ERA is verified using synthetic and actual data from synchrophasor measurement terminals. The research results show that the proposed algorithm can accurately extract fundamental and subsynchronous or supersynchronous oscillation parameters, effectively realizing dynamic real-time monitoring of subsynchronous oscillations.

Funder

Science and Technology Project of the State Grid Corporation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3