FrameSum: Leveraging Framing Theory and Deep Learning for Enhanced News Text Summarization

Author:

Zhang Xin1,Wei Qiyi1,Zheng Bin2,Liu Jiefeng1,Zhang Pengzhou3

Affiliation:

1. School of Computer and Cyber Sciences, Communication University of China, Beijing 100024, China

2. School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

3. State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing 100024, China

Abstract

Framing theory is a widely accepted theoretical framework in the field of news communication studies, frequently employed to analyze the content of news reports. This paper innovatively introduces framing theory into the text summarization task and proposes a news text summarization method based on framing theory to address the global context of rapidly increasing speed and scale of information dissemination. Traditional text summarization methods often overlook the implicit deep-level semantic content and situational frames in news texts, and the method proposed in this paper aims to fill this gap. Our deep learning-based news frame identification module can automatically identify frame elements in the text and predict the dominant frame of the text. The frame-aware summarization generation model (FrameSum) can incorporate the identified frame feature into the text representation and attention mechanism, ensuring that the generated summary focuses on the core content of the news report while maintaining high information coverage, readability, and objectivity. Through empirical studies on the standard CNN/Daily Mail dataset, we found that this method performs significantly better in improving summary quality and maintaining the accuracy of news facts.

Publisher

MDPI AG

Reference66 articles.

1. IDC (2024, July 25). Expect 175 Zettabytes of Data Worldwide by 2025. Networkworld. Available online: https://www.networkworld.com/article/3325397/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html.

2. Mohsin, M., Latif, S., Haneef, M., Tariq, U., Khan, M.A., Kadry, S., and Choi, J.I. (2021). Improved Text Summarization of News Articles Using GA-HC and PSO-HC. Appl. Sci., 11.

3. SHEG: Summarization and headline generation of news articles using deep learning;Singh;Neural Comput. Appl.,2021

4. Liu, Y., Zhu, C., and Zeng, M. (2021). End-to-end segmentation-based news summarization. arXiv.

5. Ma, C., Zhang, W.E., Wang, H., Gupta, S., and Guo, M. (2021). Dependency Structure for News Document Summarization. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3