Nonlinear Modeling and Transient Stability Analysis of Grid-Connected Voltage Source Converters during Asymmetric Faults Considering Multiple Control Loop Coupling

Author:

Guo Jingkuan1,Zhai Denghui1,Li Xialin2,Wang Zhi2ORCID

Affiliation:

1. China Electric Equipment Group Science and Technology Research Institute Co., Ltd., Shanghai 200040, China

2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China

Abstract

As large-scale renewable energy sources are increasingly integrated into AC grids via voltage source converters (VSCs), the transient synchronization stability of phase-locked loop (PLL)-based VSCs during fault ride-through is gaining more attention. Most existing studies assume that the positive and negative sequence separation and current control dynamics are much faster than the PLL dynamics, thereby neglecting their impact on the transient synchronization stability of the system. However, when the PLL bandwidth is relatively large, ignoring the positive and negative sequence separation and current control dynamics may result in incorrect stability assessments. To address this issue, this paper first considers the multiple control loop coupling, including positive and negative sequence separation, current control, and PLL, to construct a full-order nonlinear mathematical model of the VSC grid-connected system under asymmetric fault conditions. Based on this, the phase trajectory method is employed to analyze the transient synchronization stability of the system. Additionally, this full-order mathematical model is used to determine the PLL bandwidth boundary beyond which the effects of positive and negative sequence separation and current control dynamics cannot be neglected. Finally, PSCAD/EMTDC simulation results validate the effectiveness of the theoretical analysis presented in this paper.

Funder

China Electrical Equipment Group Corporation Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3