Experimental Investigation on Failure Characteristics of Pre-Holed Jointed Rock Mass Assisted with AE and DIC

Author:

Yan Xiaoming1,Liu Yixing1,Yang Shuo23ORCID,Jin Yuhao23,Chen Miao4ORCID

Affiliation:

1. Shanxi Coal Transportation and Sales Group, Taiyuan 030006, China

2. School of Civil Engineering, Xuzhou University of Technology, Xuzhou 221018, China

3. School of Mining, China University of Mining and Technology, Xuzhou 221116, China

4. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

For jointed rock mass with anisotropy and discontinuity, the structure of the surrounding rock is constantly developing and changing during tunnel excavation. It is difficult to reasonably predict localized deformation of jointed rock mass by using the existing rock mechanics theory. In this paper, the failure characteristic of pre-holed jointed rock mass with three joint angles is experimentally investigated by adopting the digital image correlation and acoustic emission methods. To avoid the influence of measurement error on Digital Image Correlation (DIC) from discontinuous deformation, parametric studies and an optimized algorithm are also included in DIC tests. Results indicate that the perpendicular-jointed condition (0° joints) is the most dangerous situation because of its comparatively lower strength and brittle failure mode with a shift energy release. For rocks with different jointed angles, localized deformation emerges after the material enters the plasticity. Significant localization occurs after the failure with cracks surrounding the center hole and pre-existing joints.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Natural Science Foundation of Jiangsu Province

General Funded Project of China Postdoctoral Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3