Knowledge Embedding Relation Network for Small Data Defect Detection

Author:

Ruan Jinjia1ORCID,He Jin1,Tong Yao1ORCID,Wang Yuchuan1,Fang Yinghao2,Qu Liang3

Affiliation:

1. China Waterborne Transport Research Institute, Beijing 100088, China

2. Shandong Maritime Safety Administration, Qingdao 266002, China

3. China National Offshore Oil Corporation, Tianjin 300459, China

Abstract

In industrial vision, the lack of defect samples is one of the key constraints of depth vision quality inspection. This paper mainly studies defect detection under a small training set, trying to reduce the dependence of the model on defect samples by using normal samples. Therefore, we propose a Knowledge-Embedding Relational Network. We propose a Knowledge-Embedding Relational Network (KRN): firstly, unsupervised clustering and convolution features are used to model the knowledge of normal samples; at the same time, based on CNN feature extraction assisted by image segmentation, the conv feature is obtained from the backbone network; then, we build the relationship between knowledge and prediction samples through covariance, embed the knowledge, further mine the correlation using gram operation, normalize the power of the high-order features obtained by covariance, and finally send them to the prediction network. Our KRN has three attractive characteristics: (I) Knowledge Modeling uses the unsupervised clustering algorithm to statistically model the standard samples so as to reduce the dependence of the model on defect data. (II) Covariance-based Knowledge Embedding and the Gram Operation capture the second-order statistics of knowledge features and predicted image features to deeply mine the robust correlation. (III) Power Normalizing suppresses the burstiness of covariance module learning and the complexity of the feature space. KRN outperformed several advanced baselines in small training sets on the DAGM 2007, KSDD, and Steel datasets.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3