Innovative Energy Sustainable Solutions for Urban Infrastructure: Implementing Micro-Pumped Hydro Storage in Singapore’s Multi-Level Carparks

Author:

Kok Chiang Liang1ORCID,Ho Chee Kit2,Koh Yit Yan1,Tay Wan Xuan1,Teo Tee Hui3ORCID

Affiliation:

1. College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia

2. Engineering Cluster, Singapore Institute of Technology, Singapore 138683, Singapore

3. Engineering Product Development, Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore

Abstract

As part of the initiative to achieve Singapore’s Green Plan 2030, we propose to investigate the potential of utilizing micro-pumped hydroelectric energy storage (PHES) systems in multi-level carparks (MLCP: a stacked car park that has multiple levels, may be enclosed, and can be an independent building) as a more environmentally friendly alternative to traditional battery storage for a surplus of solar energy. This study focuses on an MLCP with a surface area of 3311 m2 and a height of 12 m, considering design constraints such as a floor load capacity of 5 kN/m2 and the requirement for a consistent energy discharge over a 12 h period. The research identifies a Turgo turbine as the optimal choice, providing a power output of 2.9 kW at a flow rate of 0.03 m3/s with an efficiency of 85%. This system, capable of storing 1655.5 m3 of water, can supply power to 289 light bulbs (each consuming 10 W) for 15.3 h, thus having the capacity to support up to three MLCPs. These results underscore the environmental advantages of PHES over conventional batteries, highlighting its potential for integration with solar panels to decrease carbon emissions. This approach not only aligns with Singapore’s green initiatives but also promotes the development of a more sustainable energy infrastructure.

Publisher

MDPI AG

Reference57 articles.

1. Innovative Green Energy Solutions for Urban Areas;Chua;Sustain. Energy J.,2023

2. Singapore’s Green Energy Initiatives;Lim;J. Urban Sustain.,2022

3. Environmental Impacts of Solar Energy Storage;Ng;Energy Environ. Rev.,2020

4. Renewable Energy Challenges in Urban Cities;Tan;Urban Energy Solut.,2021

5. International Energy Agency (2024, July 16). Pumped Hydropower Storage: Delivering Essential Flexibility Services to Decarbonise Electricity. IEA Report. Available online: https://www.iea.org/energy-system/renewables/hydroelectricity.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3