Design and Implementation of an Interactive Question-Answering System with Retrieval-Augmented Generation for Personalized Databases

Author:

Byun Jaeyeon1ORCID,Kim Bokyeong1ORCID,Cha Kyung-Ae1ORCID,Lee Eunhyung2

Affiliation:

1. Department of Artificial Intelligence, Daegu University, Gyeongsan 38453, Republic of Korea

2. Textway Inc., A02 Unicorn Lab., 5th Fl, 111, Oksan-ro, Buk-gu, Daegu 41593, Republic of Korea

Abstract

This study introduces a novel approach to personalized information retrieval by integrating retrieval augmentation generation (RAG) with a personalized database system. Recent advancements in large language models (LLMs) have shown impressive text generation capabilities but face limitations in knowledge accuracy and hallucinations. Our research addresses these challenges by combining LLMs with structured, personalized data to enhance search precision and relevance. By tagging keywords within personal documents and organizing information into context-based categories, users can conduct efficient searches within their data repositories. We conducted experiments using the GPT-3.5 and text-embedding-ada-002 models and evaluated the RAG assessment framework with five different language models and two embedding models. Our results indicate that the combination of GPT-3.5 and text-embedding-ada-002 is effective for a personalized database question-answering system, with potential for various language models depending on the application. Our approach offers improved accuracy, real-time data updates, and enhanced user experience, making a significant contribution to information retrieval by LLMs and impacting various artificial intelligence applications.

Publisher

MDPI AG

Reference40 articles.

1. Radford, A., and Narasimhan, K. (2024, July 25). Improving Language Understanding by Generative Pre-Training, OpenAI Blog 2018. Available online: https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf.

2. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2024, July 25). Language Models Are Unsupervised Multitask Learners, OpenAI Blog 2019. Available online: https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf.

3. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., and Agarwal, S. (2020). Language models are few-shot learners. arXiv.

4. Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., and Chen, W. (2021). What Makes Good In-Context Examples for GPT-3?. arXiv.

5. Use of ChatGPT in academia: Academic integrity hangs in the balance;Sadallah;Technol. Soc.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3