Wavelet-Based Identification for Spinning Projectile with Gasodynamic Control Aerodynamic Coefficients Determination

Author:

Lichota PiotrORCID,Jacewicz MariuszORCID,Głębocki RobertORCID,Miedziński DariuszORCID

Abstract

Identification of a spinning projectile controlled with gasodynamic engines is shown in this paper. A missile model with a measurement inertial unit was developed from Newton’s law of motion and its aerodynamic coefficients were identified. This was achieved by applying the maximum likelihood principle in the wavelet domain. To assess the results, this was also performed in the time domain. The outcomes were obtained for two cases: when noise was not present and when it was included in the data. In all cases, the identification was performed in the passive mode, i.e., no special system identification experiments were designed. In the noise-free case, aerodynamic coefficients were estimated with high accuracy. When noise was included in the data, the wavelet-based estimates had a drop in their accuracy, but were still very accurate, whereas for the time domain approach the estimates were considered inaccurate.

Funder

National Centre for Reaserch and Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of Integrated Identification of Aerodynamic Parameters and Thrust of Cruise Vehicle;2023 8th International Conference on Mechanical Engineering and Robotics Research (ICMERR);2023-12-08

2. Unstable tilt-rotor maximum likelihood wavelet-based identification from flight test data;Aircraft Engineering and Aerospace Technology;2023-06-12

3. Missile Aerodynamics Model Identification Using Flight Data;2023 IEEE Aerospace Conference;2023-03-04

4. Wavelet Transform-Based Aircraft System Identification;Journal of Guidance, Control, and Dynamics;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3