Abstract
Current camera traps use passive infrared triggers; therefore, they only capture images when animals have a substantially different surface body temperature than the background. Endothermic animals, such as mammals and birds, provide adequate temperature contrast to trigger cameras, while ectothermic animals, such as amphibians, reptiles, and invertebrates, do not. Therefore, a camera trap that is capable of monitoring ectotherms can expand the capacity of ecological research on ectothermic animals. This study presents the design, development, and evaluation of a solar-powered and artificial-intelligence-assisted camera trap system with the ability to monitor both endothermic and ectothermic animals. The system is developed using a central processing unit, integrated graphics processing unit, camera, infrared light, flash drive, printed circuit board, solar panel, battery, microphone, GPS receiver, temperature/humidity sensor, light sensor, and other customized circuitry. It continuously monitors image frames using a motion detection algorithm and commences recording when a moving animal is detected during the day or night. Field trials demonstrate that this system successfully recorded a high number of animals. Lab testing using artificially generated motion demonstrated that the system successfully recorded within video frames at a high accuracy of 0.99, providing an optimized peak power consumption of 5.208 W. No water or dust entered the cases during field trials. A total of 27 cameras saved 85,870 video segments during field trials, of which 423 video segments successfully recorded ectothermic animals (reptiles, amphibians, and arthropods). This newly developed camera trap will benefit wildlife biologists, as it successfully monitors both endothermic and ectothermic animals.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference32 articles.
1. “Which camera trap type and how many do I need?” A review of camera features and study designs for a range of wildlife research application;Rovero;Hystrix Ital. J. Mammal.,2013
2. An Introduction to Camera Trapping for Wildlife Surveys in Australia;Meek,2012
3. Quantifying the sensitivity of camera traps: an adapted distance sampling approach
4. WiseEye: Next Generation Expandable and Programmable Camera Trap Platform for Wildlife Research
5. Solar-powered, wireless smart camera network: An IoT solution for outdoor video monitoring
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献