Intelligent Task Dispatching and Scheduling Using a Deep Q-Network in a Cluster Edge Computing System

Author:

Youn JoosangORCID,Han Youn-HeeORCID

Abstract

Recently, intelligent IoT applications based on artificial intelligence (AI) have been deployed with mobile edge computing (MEC). Intelligent IoT applications demand more computing resources and lower service latencies for AI tasks in dynamic MEC environments. Thus, in this paper, considering the resource scalability and resource optimization of edge computing, an intelligent task dispatching model using a deep Q-network, which can efficiently use the computing resource of edge nodes is proposed to maximize the computation ability of the cluster edge system, which consists of multiple edge nodes. The cluster edge system can be implemented with the Kubernetes technology. The objective of the proposed model is to minimize the average response time of tasks offloaded to the edge computing system and optimize the resource allocation for computing the offloaded tasks. For this, we first formulate the optimization problem of resource allocation as a Markov decision process (MDP) and adopt a deep reinforcement learning technology to solve this problem. Thus, the proposed intelligent task dispatching model is designed based on a deep Q-network (DQN) algorithm to update the task dispatching policy. The simulation results show that the proposed model archives a better convergence performanc in terms of the average completion time of all offloaded tasks, than existing task dispatching methods, such as the Random Method, Least Load Method and Round-Robin Method, and has a better task completion rate than the existing task dispatching method when using the same resources as the cluster edge system.

Funder

This work was supported in part by the Institute for Information and Communications Technology Planning and Evaluation (IITP) through the Korean Government [Ministry of Science and ICT (MSIT)]

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3