Abstract
This study carried out modeling of the contact between a pair of antagonist teeth with/without individual mouthguards with different geometric configurations. Comparisons of the stress–strain state of teeth interacting through a multilayer mouthguard EVA and multilayer mouthguards with an A-silicon interlayer were performed. The influence of the intermediate layer geometry of A-silicone in a multilayer mouthguard with an A-silicon interlayer on the stress–strain state of the human dentition was considered. The teeth geometry was obtained by computed tomography data and patient dental impressions. The contact 2D problem had a constant thickness, frictional contact deformation, and large deformations in the mouthguard. The strain–stress analysis of the biomechanical model was performed by elastoplastic stress–strain theory. Four geometric configurations of the mouthguard were considered within a wide range of functional loads varied from 50 to 300 N. The stress–strain distributions in a teeth pair during contact interaction at different levels of the physiological loads were obtained. The dependences of the maximum level of stress intensity and the plastic deformation intensity were established, and the contact parameters near the occlusion zone were considered. It was found that when using a multilayer mouthguard with an A-silicone interlayer, there is a significant decrease in the stress intensity level in the hard tissues of the teeth, more than eight and four times for the teeth of the upper and lower teeth, respectively.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献