Geometrical Investigation of Piezoelectric Patches for Broadband Energy Harvesting in Non-Deterministic Composite Plates

Author:

Muthalif Asan G. A.ORCID,Ali AbdelrahmanORCID,Renno JamilORCID,Wahid Azni N.,Nor Khairul A. M.,Nordin Nor Hidayati Diyana

Abstract

Mechanical energy is the most ubiquitous form of energy that can be harvested and converted into useful electrical power. For this reason, the piezoelectric energy harvesters (PEHs), with their inherent electromechanical coupling and high-power density, have been widely incorporated in many applications to generate power from ambient mechanical vibrations. However, one of the main challenges to the wider adoption of PEHs is how to optimize their design for maximum energy harvesting. In this paper, an investigation was conducted on the energy harvesting from seven piezoelectric patch shapes (differing in the number of edges) when attached to a non-deterministic laminated composite (single/double lamina) plate subjected to change in fiber orientation. The performance of the PEHs was examined through a coupled-field finite element (FE) model. The plate was simply supported, and its dynamics were randomized by attaching randomly distributed point masses on the plate surface in addition to applying randomly located time-harmonic point forces. The randomization of point masses and point force location on a thin plate produce non-deterministic response. The design optimization was performed by employing the ensemble-responses of the electrical potential developed across the electrodes of the piezoelectric patches. The results present the optimal fiber orientation and patch shape for maximum energy harvesting in the case of single and double lamina composite plates. The results show that the performance is optimal at 0° or 90° fiber orientation for single-lamina, and at 0°/0° and 0°/90° fiber orientations for double-lamina composites. For frequencies below 25 Hz, patches with a low number of edges exhibited a higher harvesting performance (triangular for single-lamina/quadrilateral for double-lamina). As for the broadband frequencies (above 25 Hz), the performance was optimal for the patches with a higher number of edges (dodecagonal for single-lamina/octagonal for double-lamina).

Funder

International Research Collaboration Co-Funds, Qatar University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3