Study on Improving the Precise Machinability of Single Crystal SiC by an Ultrasonic-Assisted Hybrid Process

Author:

Shi DongORCID,Zhao Tianchen,Ma Tengfei,Pan Jinping

Abstract

Silicon carbide (SiC) devices have become one of the key research directions in the field of power electronics. However, due to the limitation of the SiC wafer growth process and processing capacity, SiC devices, such as SiC MOSFET (Metal-oxide-semiconductor Field-effect Transistor), are facing the problems of high cost and unsatisfied performance. To improve the precise machinability of single-crystal SiC wafer, this paper proposed a new hybrid process. Firstly, we developed an ultrasonic vibration-assisted device, by which ultrasonic-assisted lapping and ultrasonic-assisted CMP (chemical mechanical polishing) for SiC wafer were fulfilled. Secondly, a novel three-step ultrasonic-assisted precise machining route was proposed. In the first step, ultrasonic lapping using a cast iron disc was conducted, which quickly removed large surface damages with a high MRR (material removal rate) of 10.93 μm/min. In the second step, ultrasonic lapping using a copper disc was conducted, which reduced the residual surface defects with a high MRR of 6.11 μm/min. In the third step, ultrasonic CMP using a polyurethane pad was conducted, which achieved a smooth and less damaged surface with an MRR of 1.44 μm/h. These results suggest that the ultrasonic-assisted hybrid process can improve the precise machinability of SiC, which will hopefully achieve high-efficiency and ultra-precision machining.

Funder

the Scientific Research Foundation for Advanced Talents, Quzhou University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3