Abstract
This work reports on the effect of TiO2 nanotubes (TiO2-NTs), decorated wih platinum nanoparticles (Pt-NPs), on the removal of bacteria and volatile organic compounds (VOCs). The Pt-NPs were loaded onto the TiO2-NTs using the electrodeposition method at four decoration times (100, 200, 300, and 600 s). The realized Pt-NPs/TiO2-NTs nanocomposites were used for the degradation of cyclohexane, a highly toxic and carcinogenic VOC pollutant in the chemical industry. The achieved Pt-NPs/TiO2-NTs nanocomposites were characterized using X-ray diffraction (XRD), photoluminescence (PL), diffuse reflectance spectroscopy (UV–Vis), and scanning (SEM) and transmission (TEM) electron microscopy. To understand the photocatalytic and antibacterial behavior of the Pt-NPs/TiO2-NTs, simultaneous treatment of Escherichia coli and cyclohexane was conducted while varying the catalyst time decoration. We noticed a complete bacterial inactivation rate with 90% VOC removal within 60 min of visible light irradiation. Moreover, the Langmuir–Hinshelwood model correlated well with the experimental results of the photocatalytic treatment of indoor air.
Subject
General Materials Science
Reference47 articles.
1. Photocatalytic air purifiers for indoor air: European standard and pilot room experiments
2. Programme Pilote de Vérification des Technologies Environnementales de l ’UE Protocole Général de Verification,2016
3. Public Health, Environmental and Social Determinants of Health (PHE), Genevahttps://www.who.int/phe/health_topics/outdoorair/databases
4. Traitement de L’air Interieur par Photocatalyse—Évaluation de L’innocuité des Systèmes de Traitement de L’air;Laurence,2017
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献