Nonlinear ABAQUS Simulations for Notched Concrete Beams

Author:

Tawfik Ahmed BahgatORCID,Mahfouz Sameh Youssef,Taher Salah El-Din Fahmy

Abstract

The numerical simulation of concrete fracture is difficult because of the brittle, inelastic-nonlinear nature of concrete. In this study, notched plain and reinforced concrete beams were investigated numerically to study their flexural response using different crack simulation techniques in ABAQUS. The flexural response was expressed by hardening and softening regime, flexural capacity, failure ductility, damage initiation and propagation, fracture energy, crack path, and crack mouth opening displacement. The employed techniques were the contour integral technique (CIT), the extended finite element method (XFEM), and the virtual crack closure technique (VCCT). A parametric study regarding the initial notch-to-depth ratio (ao/D), the shear span-to-depth ratio (S.S/D), and external post-tensioning (EPT) were investigated. It was found that both XFEM and VCCT produced better results, but XFEM had better flexural simulation. Contrarily, the CIT models failed to express the softening behavior and to capture the crack path. Furthermore, the flexural capacity was increased after reducing the (ao/D) and after decreasing the S.S/D. Additionally, using EPT increased the flexural capacity, showed the ductile flexural response, and reduced the flexural softening. Moreover, using reinforcement led to more ductile behavior, controlled damage propagation, and a dramatic increase in the flexural capacity. Furthermore, CIT showed reliable results for reinforced concrete beams, unlike plain concrete beams.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3