Improving Mean Annual Precipitation Prediction Incorporating Elevation and Taking into Account Support Size

Author:

Buttafuoco GabrieleORCID,Conforti MassimoORCID

Abstract

Accounting for secondary exhaustive variables (such as elevation) in modelling the spatial distribution of precipitation can improve their estimate accuracy. However, elevation and precipitation data are associated with different support sizes and it is necessary to define methods to combine such different spatial data. The paper was aimed to compare block ordinary cokriging and block kriging with an external drift in estimating the annual precipitation using elevation as covariate. Block ordinary kriging was used as reference of a univariate geostatistical approach. In addition, the different support sizes associated with precipitation and elevation data were also taken into account. The study area was the Calabria region (southern Italy), which has a spatially variable Mediterranean climate because of its high orographic variability. Block kriging with elevation as external drift, compared to block ordinary kriging and block ordinary cokriging, was the most accurate approach for modelling the spatial distribution of annual mean precipitation. The three measures of accuracy (MAE, mean absolute error; RMSEP, root-mean-squared error of prediction; MRE, mean relative error) have the lowest values (MAE = 112.80 mm; RMSEP = 144.89 mm, and MRE = 0.11), whereas the goodness of prediction (G) has the highest value (75.67). The results clearly indicated that the use of an exhaustive secondary variable always improves the precipitation estimate, but in the case of areas with elevations below 120 m, block cokriging makes better use of secondary information in precipitation estimation than block kriging with external drift. At higher elevations, the opposite is always true: block kriging with external drift performs better than block cokriging. This approach takes into account the support size associated with precipitation and elevation data. Accounting for elevation allowed to obtain more detailed maps than using block ordinary kriging. However, block kriging with external drift produced a map with more local details than that of block ordinary cokriging because of the local re-evaluation of the linear regression of precipitation on block estimates.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3