Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles

Author:

Nhamo LuxonORCID,Magidi James,Nyamugama AdolphORCID,Clulow Alistair D.,Sibanda MbulisiORCID,Chimonyo Vimbayi G. P.,Mabhaudhi TafadzwanasheORCID

Abstract

Unmanned Aerial Vehicles (UAVs) are an alternative to costly and time-consuming traditional methods to improve agricultural water management and crop productivity through the acquisition, processing, and analyses of high-resolution spatial and temporal crop data at field scale. UAVs mounted with multispectral and thermal cameras facilitate the monitoring of crops throughout the crop growing cycle, allowing for timely detection and intervention in case of any anomalies. The use of UAVs in smallholder agriculture is poised to ensure food security at household level and improve agricultural water management in developing countries. This review synthesises the use of UAVs in smallholder agriculture in the smallholder agriculture sector in developing countries. The review highlights the role of UAV derived normalised difference vegetation index (NDVI) in assessing crop health, evapotranspiration, water stress and disaster risk reduction. The focus is to provide more accurate statistics on irrigated areas, crop water requirements and to improve water productivity and crop yield. UAVs facilitate access to agro-meteorological information at field scale and in near real-time, important information for irrigation scheduling and other on-field decision-making. The technology improves smallholder agriculture by facilitating access to information on crop biophysical parameters in near real-time for improved preparedness and operational decision-making. Coupled with accurate meteorological data, the technology allows for precise estimations of crop water requirements and crop evapotranspiration at high spatial resolution. Timely access to crop health information helps inform operational decisions at the farm level, and thus, enhancing rural livelihoods and wellbeing.

Funder

Water Research Commission

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3