Abstract
Biogas production is a key renewable energy pathway for a more sustainable future bioeconomy. However, there is a crucial trade-off between biomass productivity and social-ecological sustainability of available biogas cropping systems. Permanent grassland has been frequently promoted as a promising perennial cropping system for biomass production. Three- and four-cut regimes are usually the highest-yielding and thus preferable for biogas production. A three-year field trial in southwest Germany investigated biomass yield and biochemical composition of mesotrophic Arrhenatheretum grassland under three cutting regimes (two-, three- and four-cut). For the three-cut regime, a preliminary biogas batch test was conducted. The three-cut regime had the highest annual accumulated dry matter yield (11.8–14.8 Mg ha−1), an average specific methane yield of 0.289 m3N kg−1 volatile solids−1 and an accumulated annual methane yield of 3167–3893 m³N ha−1. The four-cut regime performed least favorably due to a lower dry matter yield than the three-cut regime, the highest ash content and the highest nitrogen content. Thus, the three-cut regime promises the best yield performance, whereas the two-cut regime can potentially provide more ecosystem services such as biodiversity conservation and wild-game protection. Consequently, the two-cut regime could help improve the social-ecological sustainability of biogas crop cultivation.
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献