The Performance of Mesotrophic Arrhenatheretum Grassland under Different Cutting Frequency Regimes for Biomass Production in Southwest Germany

Author:

von Cossel MoritzORCID,Bauerle AndreaORCID,Boob Meike,Thumm Ulrich,Elsaesser Martin,Lewandowski IrisORCID

Abstract

Biogas production is a key renewable energy pathway for a more sustainable future bioeconomy. However, there is a crucial trade-off between biomass productivity and social-ecological sustainability of available biogas cropping systems. Permanent grassland has been frequently promoted as a promising perennial cropping system for biomass production. Three- and four-cut regimes are usually the highest-yielding and thus preferable for biogas production. A three-year field trial in southwest Germany investigated biomass yield and biochemical composition of mesotrophic Arrhenatheretum grassland under three cutting regimes (two-, three- and four-cut). For the three-cut regime, a preliminary biogas batch test was conducted. The three-cut regime had the highest annual accumulated dry matter yield (11.8–14.8 Mg ha−1), an average specific methane yield of 0.289 m3N kg−1 volatile solids−1 and an accumulated annual methane yield of 3167–3893 m³N ha−1. The four-cut regime performed least favorably due to a lower dry matter yield than the three-cut regime, the highest ash content and the highest nitrogen content. Thus, the three-cut regime promises the best yield performance, whereas the two-cut regime can potentially provide more ecosystem services such as biodiversity conservation and wild-game protection. Consequently, the two-cut regime could help improve the social-ecological sustainability of biogas crop cultivation.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3