Hyperspectral Estimation of Nitrogen Content in Wheat Based on Fractional Difference and Continuous Wavelet Transform

Author:

Li Changchun1,Li Xinyan1,Meng Xiaopeng1,Xiao Zhen1,Wu Xifang1,Wang Xin1,Ren Lipeng1,Li Yafeng1,Zhao Chenyi1,Yang Chen1

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China

Abstract

Nitrogen content is a crucial index for crop growth diagnosis and the exact estimation of nitrogen content is of great significance for grasping crop growth status in real-time. This paper takes winter wheat as the study object and the precision agriculture demonstration area of the Jiaozuo Academy of Agricultural and Forestry Sciences in Henan Province as the research area. The hyperspectral reflectance data of the wheat canopy in different growth periods are obtained with the ASD ground object hyperspectral instrument, and the original canopy spectral data are preprocessed by fractional differential and continuous wavelet transform; then, the vegetation indices are established, correlation analysis with nitrogen content is conducted, and the fractional differential spectra are selected; finally, based on the wavelet energy coefficient and the vegetation indices with strong correlations, the methods of support vector machine (SVM), ridge regression, stepwise regression, Gaussian process regression (GPR), and the BP neural network are used to construct the estimation model for nitrogen content in wheat at different growth stages. By adopting the R2 and root mean square error (RMSE) indices, the best nitrogen content estimation model at every growth stage is selected. The overall analysis of the nitrogen content estimation effect indicated that for the four growth periods, the maximum modeling and validation R2 of the nitrogen content estimation models of the SVM, ridge regression, stepwise regression, GPR, and BP neural network models reached 0.95 and 0.93, the average reached 0.76 and 0.71, and the overall estimation effect was good. The average values of the modeling and validation R2 of the nitrogen content estimation model at the flag picking stage were 0.85 and 0.81, respectively, which were 37.10% and 44.64%, 1.19% and 3.85%, and 14.86% and 17.39% higher than those at the jointing stage, flowering stage, and filling stage, respectively. Therefore, the model of the flag picking stage has higher estimation accuracy and a better estimation effect on the nitrogen content. For the different growth stages, the optimal estimation models of nitrogen content were different. Among them, continuous wavelet transform combined with the BP neural network model can be the most effective method for estimating the N content in wheat at the flagging stage. The paper provides an effective method for estimating the nitrogen content in wheat and a new idea for crop growth monitoring.

Funder

Henan Province Science and Technology Research Project

Postdoctoral Project Start-up Grant in Henan Province

Henan University of Science and Technology Doctoral Fund

2023 Henan Province key research and development and promotion of special projects

Henan Synergistic Innovation Center Open Class Course

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3