Production Efficiency and Total Protein Yield in Quinoa Grown under Water Stress

Author:

Pinto Antonio A.ORCID,Fischer Susana,Wilckens Rosemarie,Bustamante LuisORCID,Berti Marisol T.ORCID

Abstract

The increasing water scarcity affects the agricultural sector, and it is a significant constraining factor for crop production in many areas of the world. Water resource management and use related to crop productivity is the most important factor in many crops. Since consumer demands healthy food, the nutritive quality and the active ingredient need to be considered within the productive issue. The objective of this study was to determine water technical efficiency related to seed yield and seed protein content and composition in quinoa (Chenopodium quinoa Willd.) under water stress using data envelopment analysis (DEA). The study was conducted in Chillan, Chile in two growing seasons. As water availability increased, seed yield, globulin, and albumin yield increased, particularly in the genotype Cahuil. The higher average efficiency levels for the DEA were 46.7% and 39.2% in Cahuil in both seasons at 20% available water (AW). The highest average efficiency of globulin yield was recorded in the same genotype (Cahuil). The highest multi-product technical efficiency levels in all input and output included in this study were observed in Cahuil, Regalona, and Morado under water scarcity in both seasons. In future studies related to crop management, DEA provides a good framework for estimating efficiency under restricted factors and multi-product results.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3