Bacillus velezensis T149-19 and Bacillus safensis T052-76 as Potential Biocontrol Agents against Foot Rot Disease in Sweet Potato

Author:

Mateus Jackeline RossettiORCID,Dal’Rio Isabella,Jurelevicius Diogo,da Mota Fabio FariaORCID,Marques Joana Montezano,Ramos Rommel Thiago Juca,da Costa da Silva Artur Luiz,Gagliardi Paulo Roberto,Seldin LucyORCID

Abstract

Sweet potato (Ipomoea batatas) tuberous roots are used for human consumption, animal feed, and many industrial products. However, the crop is susceptible to various pests and diseases, including foot rot disease caused by the phytopathogenic fungus Plenodomus destruens. Biological control of plant pathogens by Bacillus species is widely disseminated in agrosystems, but specific biological control agents against the foot rot disease-causing fungus are not yet available. Our previous studies showed that two Bacillus strains isolated from sweet potato roots—B. safensis T052-76 and B. velezensis T149-19—were able to inhibit P. destruens in vitro, but data from in vivo experiments using simultaneously the fungus and the bacteria were missing. In this study, both strains were shown to protect the plant from the disease and to mitigate the symptoms of foot rot disease in pot experiments. Total fungal community quantification using real-time PCR showed a significant decrease in the number of copies of the ITS gene when the bacteria were inoculated, compared to the control (with the fungus only). To determine the genes encoding antimicrobial substances likely to inhibit the fungus, their genomes were sequenced and annotated. Genes coding for mycosubtilin, bacillaene, macrolactin, bacillibactin, bacilysin, plantazolicin, plipastatin, dificidine, fengycin and surfactin were found in B. velezensis T149-19, while those coding for bacylisin, lichenysin, bacillibactin, fengycin and surfactin were found in B. safensis T052-76. Altogether, the data presented here contribute to advancing the knowledge for the use of these Bacillus strains as biocontrol products in sweet potato.

Funder

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference50 articles.

1. CIPhttps://cipotato.org/sweetpotato/

2. SWEETPOTATO PRODUCTION WORLDWIDE: ASSESSMENT, TRENDS AND THE FUTURE

3. A genome-wide BAC-end sequence survey provides first insights into sweet potato (Ipomoea batatas (L.) Lam.) genome composition;Zengzhi;BMC Genom.,2016

4. FAOSTAT—Statistics Databasehttp://www.faostat.fao.org

5. Batata-Doce (Ipomoea Batatas), In Sistemas De Produção Nº 6, Versão Eletrônica;Silva,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3