An Automatic Light Stress Grading Architecture Based on Feature Optimization and Convolutional Neural Network

Author:

Hao XiaORCID,Zhang Man,Zhou Tianru,Guo XuchaoORCID,Tomasetto FedericoORCID,Tong Yuxin,Wang Minjuan

Abstract

The identification of light stress is crucial for light control in plant factories. Image-based lighting classification of leafy vegetables has exhibited remarkable performance with high convenience and economy. Convolutional Neural Network (CNN) has been widely used for crop image analysis because of its architecture, high accuracy and efficiency. Among them, large intra-class differences and small inter-class differences are important factors affecting crop identification and a critical challenge for fine-grained classification tasks based on CNN. To address this problem, we took the Lettuce (Lactuca sativa L.) widely grown in plant factories as the research object and constructed a leaf image set containing four stress levels. Then a light stress grading model combined with classic pre-trained CNN and Triplet loss function is constructed, which is named Tr-CNN. The model uses the Triplet loss function to constrain the distance of images in the feature space, which can reduce the Euclidean distance of the samples from the same class and increase the heterogeneous Euclidean distance. Multiple sets of experimental results indicate that the model proposed in this paper (Tr-CNN) has obvious advantages in light stress grading dataset and generalized dataset.

Funder

National Natural Science Foundation of China

China Agriculture Research System

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Sickle Cell, Megaloblastic Anemia, Thalassemia and Malaria through Convolutional Neural Network;2021 Global Congress on Electrical Engineering (GC-ElecEng);2021-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3