Abstract
Glomalin, one of the glycoproteins generated in the spores and hyphae of arbuscular mycorrhizal (AM) fungi, has multiple functions in plants and soil, while the role of foliar spray of easily extractable glomalin-related soil proteins (EE-GRSP) in citrus fruits is not well defined. Our study aimed to use referenced transcriptome sequencing to uncover the mechanism and the role of exogenous EE-GRSP in two late-ripening varieties of sweet orange (Citrus sinensis) fruits including Navel Lane Late (LW) and Rohde Red Valencia (XC). The 1804 and 1861 differentially expressed genes were identified in fruits of LW and XC, respectively, following foliar spray of EE-GRSP. Photosynthesis ranked second in the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolism in the LW variety, and carbon fixation in photosynthetic organizations ranked first in KEGG metabolism in the XC variety. The response to foliar spray of EE-GRSP affected the fruit starch and sucrose metabolism of KEGG, with 15 (10 up-regulated and 5 down-regulated) and 13 (2 up-regulated and 11 down-regulated) differentially expressed genes identified in the LW and XC variety, respectively. Cs5g19060 (sucrose phosphate synthase 4) was activated and reduced by EE-GRSP on XC and LW, respectively. Cs1g18220 (β-fructofuranosidase) and Cs2g12180 (glycosyl hydrolase family 9) genes were up-regulated and down-regulated in LW and XC, respectively. These results established the involvement of molecular signaling in response to foliar spray of EE-GRSP activating fruit sugar metabolism is dependent on citrus varieties.
Funder
National Natural Science Foundation of China
2020 Joint Projects between Chinese and CEECs’ Universities
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献