Characterizing a Year-Round Particulate Matter Concentration and Variation under Different Environmental Controls in a Naturally Ventilated Dairy Barn

Author:

Lu Yujian12,Yang Xiao12,E Lei12,Fang Zhiwei12,Li Yongzhen12,Liang Chao12,Shi Zhengxiang12,Wang Chaoyuan12ORCID

Affiliation:

1. Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China

2. Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing 100083, China

Abstract

A mixing fan and spraying system is commonly used to control the indoor environment of naturally ventilated dairy barns worldwide. However, its impact on particulate matter (PM) concentration and variation is still unclear due to the lack of year-round field data. To systematically characterize the PM dynamics under different environmental controls (namely, EC1: No Fans and No Spraying; EC2: Fans; EC3: Fans and Spraying), a year-round continuous monitoring of PM less than 2.5 μm in aerodynamic diameter (PM2.5) and total suspended particle (TSP) concentrations, as well as indoor environmental factors, was carried out inside a naturally ventilated dairy barn using an IoT-based sensor monitoring network. Results showed that the hourly mean TSP and PM2.5 concentrations were 94.7 μg m−3 and 49.8 μg m−3, respectively. EC2 had a higher TSP content (116.6 μg m−3) than EC1 (98.0 μg m−3) and EC3 (81.9 μg m−3). EC1 had the greatest PM2.5 concentration (57.1 μg m−3), followed by EC2 (48.3 μg m−3) and EC3 (44.7 μg m−3). EC1 showed clear TSP and PM2.5 fluctuations during the daily operations at 07:00 to 08:00 and 18:00 to 19:00, while irregular peaks in EC2 and a relatively steady diurnal variation in EC3 were found. Daily Tsp concentrations in the three ECs did not exceed 300 μg m−3. However, 17.8%, 11.5%, and 4.8% of the observed days in EC1, EC2, and EC3 had daily mean PM2.5 concentrations above the healthy threshold (75 μg m−3), mostly from 07:00 to 08:00 and 22:00–07:00. In conclusion, the mixing fan and spraying system had significant effects on PM concentration and variation, and more protection procedures should be taken for farm workers to prevent long-term health risk exposure, to EC1 in particular.

Funder

National Natural Science Foundation of China

earmarked fund of the China Agriculture Research System

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3