The Assessment of an Effect of Natural Origin Products on the Initial Growth and Development of Maize under Drought Stress and the Occurrence of Selected Pathogens

Author:

Horoszkiewicz Joanna1,Jajor Ewa1,Danielewicz Jakub1,Korbas Marek1,Schimmelpfennig Lech2,Mikos-Szymańska Marzena2,Klimczyk Marta2,Bocianowski Jan3ORCID

Affiliation:

1. Institute of Plant Protection—National Research Institute, Węgorka 20, 60-318 Poznań, Poland

2. Grupa Azoty Zakłady Azotowe “Puławy” S.A., Al. Tysiąclecia Państwa Polskiego 13, 24-110 Puławy, Poland

3. Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, ul. Wojska Polskiego 28, 60-637 Poznań, Poland

Abstract

Poland, like other countries in the world, increasingly experiences the ongoing climate change that is a critical yield-limiting factor. The use of biostimulants in agriculture has shown tremendous potential in combating climate change-induced stresses such as drought, temperature stress, etc. They could be a promising tool in the current crop production scenario. Biostimulants are organic compounds, microbes, or amalgamation of both that could regulate plant growth behavior through molecular alteration and physiological, biochemical, and anatomical modulations. They can promote plant growth under various environmental stresses because they have a positive effect, in particular, on plant growth and resistance. There are many products of this type available on the market, including those of natural origin, which are part of the Integrated Pest Management. The ecotoxicity of chemical plant protection products, the negative effects of their use, and the change in regulations make it recommended to use low-risk chemicals and non-chemical methods, that involve the least risk to health and the environment, and at the same time ensure effective and efficient protection of crops. Natural origin biocomponents obtained by the supercritical CO2 extraction of plant material or by fermentation process in bioreactors were tested. Common maize (Zea mays L.) was selected as a test plant for growth tests at climate chambers. Results showed that the only supernatant (fermentation broth) obtained with the Paenibacillus bacteria (S2) had a positive effect on the germination index (GI > 100%) of maize seeds, compared to the obtained plant seed extracts from the crop of the legume family (Fabaceae) (E3) and from the crop of the smartweed family (Polygonaceae) (E9) (GI < 100%). The extracts E3, S1 (supernatant obtained with the use of bacteria from the genus Enterobacter) and S2 used as a single product and in combination with UAN+S, under optimal conditions of the experiment, had a positive effect on the maize root weight compared to the untreated, while under drought stress, a decrease in the root weight was observed. Moreover, on the basis of the conducted research, differences in the mycelial growth of selected fungi were found. The applied biocomponent S2 of microbial origin extract (supernatant 2) showed a mycelial growth-limiting effect on all tested Fusarium fungi isolated from the corn cobs.

Funder

The National Centre for Research and Development

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference35 articles.

1. Editorial: Biostimulants in Agriculture;Rouphael;Front. Plant Sci.,2020

2. FAOSTAT (Food and Agriculture Organization of the United Nations) (2022, October 15). Database Collections, Rome. Available online: http://www.faostat.fao.org.

3. Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants;Lephatsi;Sci. Rep.,2022

4. Long-term research activity on the biostimulant properties of natural origin compounds;Ertani;Acta Hortic.,2013

5. Agricultural uses of plant biostimulants;Calvo;Plant and Soil,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3