Affiliation:
1. College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai’an 271018, China
2. Provincial Key Laboratory of Horticultural Machinery and Equipment, Shandong Agricultural University, Tai’an 271018, China
Abstract
Achieving fast and accurate prediction of the fruit mechanical damage area is important to improve the accuracy and efficiency of apple quality grading. In this paper, the spectral data of all samples in the wavelength range from 376 to 1011 nm were collected, the sample set was divided by the physicochemical coeval distance method, and the spectral preprocessing methods were evaluated by establishing a full-wavelength artificial neural network model. The wavelength selection of spectral data was performed by competitive adaptive reweighted sampling, L1 parameter method, and the Pearson correlation coefficient method, and the partial least squares, artificial neural network, and support vector machine (Gaussian kernel) prediction models were established to predict the fruit bruise area size. The surface fitting was performed using the actual apple bruise area, and the regression surface equation of the damage time and damage height of the fruit was established. The results showed that (1) the preprocessing method of first-order difference + SG smoothing can make the prediction model more accurate; (2) the CARS-ANN prediction model has better prediction performance and higher operation efficiency, with the prediction set root mean square error of prediction and R-value of 0.1150 and 0.8675, respectively; (3) the sparrow search algorithm was used to optimize the model, which improved the accuracy of the prediction model. The root mean square error of prediction reached 0.0743 and The R-value reached 0.9739. (4) The relationship between spectral information, bruise area, damage time, and damage degree was obtained by combining the establishment of the fitted surface of the apple bruise area with the prediction model. This study is of application and extension value for the rapid nondestructive prediction of fruit bruise area.
Funder
National Key Research and Development Plan of China for Intelligent Agricultural Machinery Equipment
Shandong Natural Science Foundation
Innovation Team Fund for Fruit Industry of Modern Agricultural Technology System in Shandong Province
Shandong Agricultural University “Double First-class” Award and Subsidy Funds
Subject
Plant Science,Agronomy and Crop Science,Food Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献