A Fertilisation Strategy Combining Mineral Fertiliser and Biosolid Improves Long-Term Yield and Carbon Storage in a Calcareous Soil

Author:

Zaragüeta Armelle12,Enrique Alberto1ORCID,Portell Xavier1ORCID,Antón Rodrigo13,Virto Iñigo1ORCID,Orcaray Luis2

Affiliation:

1. Departamento Ciencias, Instituto de Innovación y Sostenibilidad en la Cadena Agroalimentaria (IS-FOOD), Universidad Pública de Navarra, 31006 Pamplona, Spain

2. Área de Innovación, Sección de Sistemas Sostenibles, Instituto Navarro de Tecnologías e Infraestructuras Agroalimentarias, 31610 Villava, Spain

3. INRAE, Info&Sols, 45075 Orléans, France

Abstract

At a strategic moment for agricultural soils, which are expected to contribute to climate change mitigation through carbon storage while safely feeding a growing world population, the fertiliser strategies used will be key. In a calcareous soil with extensive rainfed agricultural use and straw removal, different fertiliser strategies were evaluated with the aim of determining their effects on crop yield, nitrogen agronomic efficiency, and the storage of organic carbon and total nitrogen in the soil. Different doses of mineral fertiliser, expressed as kg of mineral nitrogen ha−1 year−1 (0, 60, 120, 180, and 240 nitrogen fertilising units (NFUs)), were applied to plots with and without biosolid amendment. The biosolid, applied at a rate of 40 Mg ha−1 every 3 years for 18 years, complied with national and European regulations to be applied on agricultural soil. The use of combined fertilisation reduced the amount of mineral fertiliser applied between 33 and 67% and the total fertiliser units between 7 and 40%, while maintaining similar yields to the reference mineral fertilisation (180 NFUs). These results could be related to a higher nitrogen agronomic efficiency in the combined fertilisation treatments that do not exceed the total NFUs required by the crop. Combined fertilisation was also an effective fertiliser technique to store total nitrogen and organic carbon in the soil. However, compared to the reference mineral fertilisation (180 NFUs), no significant changes in the soil organic carbon were observed, probably due to the crop management method in which the straw is removed and to higher gas emissions. Our results support the need to assess the efficacy of each agricultural technique at local scales in order not to overestimate or underestimate the potential of each agricultural technique to store soil organic carbon.

Funder

National Institute for Agricultural and Food Research and Technology

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3