Estimates of Dust Emissions and Organic Carbon Losses Induced by Wind Erosion in Farmland Worldwide from 2017 to 2021

Author:

Liu Yongxiang12,Zhao Hongmei1,Zhao Guangying2,Cao Xinyuan3,Zhang Xuelei1,Xiu Aijun1

Affiliation:

1. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China

2. Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, School of Geographical Sciences, Harbin Normal University, Harbin 150025, China

3. School of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China

Abstract

Wind erosion can cause high dust emissions from agricultural land and can lead to a significant loss of carbon and nutrients from the soil. The carbon balance of farmland soil is an integral part of the carbon cycle, especially under the current drive to develop carbon-neutral practices. However, the amount of global carbon lost due to the wind erosion of farmland is unknown. In this study, global farmland dust emissions were estimated from a dust emission inventory (0.1° × 0.1°, daily) built using the improved Community Multiscale Air Quality Modeling System–FENGSHA (CMAQ-FENGSHA), and global farmland organic carbon losses were estimated by combining this with global soil organic carbon concentration data. The average global annual dust emissions from agricultural land from 2017 to 2021 were 1.75 × 109 g/s. Global dust emissions from agricultural land are concentrated in the UK, Ukraine, and Russia in Europe; in southern Canada and the central US in North America; in the area around Buenos Aires, the capital of Argentina, in South America; and in northeast China in Asia. The global average annual organic carbon loss from agricultural land was 2970 Gg for 2017–2021. The spatial distribution of emissions is roughly consistent with that of dust emissions, which are mainly concentrated in the world’s four major black soil regions. These estimates of dust and organic carbon losses from agricultural land are essential references that can inform the global responses to the carbon cycle, dust emissions, and black soil conservation.

Funder

National Key R&D Plan of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3