Development of a Low-Power Automatic Monitoring System for Spodoptera frugiperda (J. E. Smith)

Author:

Chen Meixiang123,Chen Liping123,Yi Tongchuan123,Zhang Ruirui123ORCID,Xia Lang123,Qu Cheng4,Xu Gang123,Wang Weijia123,Ding Chenchen123,Tang Qing123,Wu Mingqi123

Affiliation:

1. National Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China

2. Research Center for Intelligent Equipment, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China

3. National Center for International Research on Agricultural Aerial Application Technology, Beijing 100097, China

4. Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract

Traditional traps for Spodoptera frugiperda (J. E. Smith) monitoring require manual counting, which is time-consuming and laborious. Automatic monitoring devices based on machine vision for pests captured by sex pheromone lures have the problems of large size, high power consumption, and high cost. In this study, we developed a micro- and low-power pest monitoring device based on machine vision, in which the pest image was acquired timely and processed using the MATLAB algorithm. The minimum and maximum power consumption of an image was 6.68 mWh and 78.93 mWh, respectively. The minimum and maximum days of monitoring device captured image at different resolutions were 7 and 1486, respectively. The optimal image resolutions and capture periods could be determined according to field application requirements, and a micro-solar panel for battery charging was added to further extend the field life of the device. The results of the automatic counting showed that the counting accuracy of S. frugiperda was 94.10%. The automatic monitoring device had the advantages of low-power consumption and high recognition accuracy, and real-time information on S. frugiperda could be obtained. It is suitable for large-scale and long-term pest monitoring and provides an important reference for pest control.

Funder

the National Natural Science Foundation of China

the Promotion and Innovation of Beijing Academy of Agriculture and Forestry Sciences

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3