Neural Modelling from the Perspective of Selected Statistical Methods on Examples of Agricultural Applications

Author:

Boniecki Piotr1ORCID,Sujak Agnieszka1ORCID,Niedbała Gniewko1ORCID,Piekarska-Boniecka Hanna2,Wawrzyniak Agnieszka1ORCID,Przybylak Andrzej1ORCID

Affiliation:

1. Department of Biosystems Engineering, Poznań University of Life Sciences, 50 Wojska Polskiego Str., 60-637 Poznań, Poland

2. Department of Entomology and Environmental Protection, Poznań University of Life Sciences, 159 Dąbrowskiego Str., 60-594 Poznań, Poland

Abstract

Modelling plays an important role in identifying and solving problems that arise in a number of scientific issues including agriculture. Research in the natural environment is often costly, labour demanding, and, in some cases, impossible to carry out. Hence, there is a need to create and use specific “substitutes” for originals, known in a broad sense as models. Owing to the dynamic development of computer techniques, simulation models, in the form of information technology (IT) systems that support cognitive processes (of various types), are acquiring significant importance. Models primarily serve to provide a better understanding of studied empirical systems, and for efficient design of new systems as well as their rapid (and also inexpensive) improvement. Empirical mathematical models that are based on artificial neural networks and mathematical statistical methods have many similarities. In practice, scientific methodologies all use different terminology, which is mainly due to historical factors. Unfortunately, this distorts an overview of their mutual correlations, and therefore, fundamentally hinders an adequate comparative analysis of the methods. Using neural modelling terminology, statisticians are primarily concerned with the process of generalisation that involves analysing previously acquired noisy empirical data. Indeed, the objects of analyses, whether statistical or neural, are generally the results of experiments that, by their nature, are subject to various types of errors, including measurement errors. In this overview, we identify and highlight areas of correlation and interfacing between several selected neural network models and relevant, commonly used statistical methods that are frequently applied in agriculture. Examples are provided on the assessment of the quality of plant and animal production, pest risks, and the quality of agricultural environments.

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3