Affiliation:
1. College of Mechanical and Electrical Engineering, Shihezi University, 221 Beisi Road, Shihezi 832003, China
2. Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, 221 Beisi Road, Shihezi 832000, China
3. Engineering Research Center for Production Mechanization of Oasis Special Economic Crop, Ministry of Education, Shihezi 832000, China
Abstract
Sea buckthorn has garnered significant attention owing to its nutritional richness; however, it has a limited shelf life. In this study, the drying process of sea buckthorn was categorized into the first-, second-, and third-drying stages. Regression models were employed to examine the effects of the drying temperature, relative humidity of the medium, and prolonged high humidity retention on various parameters during the first- and second-drying stages. Comparative analysis revealed that the optimal drying conditions for the first-drying stage of sea buckthorn were a drying temperature of 80 °C, relative humidity of 28%, and high humidity retention time of 84 min. In the second-drying phase, the optimal conditions were a drying temperature of 78 °C, a relative humidity of 17%, and a high humidity retention time of 84 min. One-way optimization revealed that the optimal drying temperature for the third-drying stage was 70 °C. The implementation of temperature- and humidity-controlled infrared hot-air drying (TH-IRHAD) techniques considerably improved the outcomes. Specifically, the drying time, energy consumption, and degree of browning decreased by 34.43%, 36.29%, and 21.43%, respectively, whereas the brightness, rehydration ratio, total flavonoid content, and total phenol content increased by 8.94%, 16.99%, 20.57%, and 28.32%, respectively. Staged TH-IRHAD substantially reduced the drying duration, increased the efficiency, and enhanced the drying quality.
Funder
Bingtuan Science and Technology Program
Bingtuan Core Technology Program