Genome-Wide Identification and Expression Analysis of the Broad-Complex, Tramtrack, and Bric-à-Brac Domain-Containing Protein Gene Family in Potato

Author:

Aiana 1,Katwal Anita1,Chauhan Hanny1ORCID,Upadhyay Santosh Kumar2ORCID,Singh Kashmir1ORCID

Affiliation:

1. Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India

2. Department of Botany, Panjab University, Sector 14, Chandigarh 160014, India

Abstract

The BTB (broad-complex, tramtrack, and bric-à-brac) domain, also known as the POZ (POX virus and zinc finger) domain, is a conserved protein–protein interaction domain present in various organisms. In this study, we conducted a genome-wide search to identify and characterize BTB genes in Solanum tuberosum. A total of 57 StBTBs were identified and analyzed for their physicochemical properties, chromosomal distribution, gene structure, conserved motifs, phylogenetic relationships, tissue-specific expression patterns, and responses to hormonal and stress treatments. We found that StBTBs were unevenly distributed across potato chromosomes and exhibited diverse gene structures and conserved motifs. Tissue-specific expression analysis revealed differential expression patterns across various potato tissues, implying their roles in plant growth and development. Furthermore, differential expression analysis under hormonal and stress treatments indicated the involvement of StBTBs in abiotic and biotic stress responses and hormone signaling pathways. Protein–protein interaction analysis identified potential interactions with ribosomal proteins, suggesting roles in translational regulation. Additionally, microRNA target site analysis revealed regulatory relationships between StBTBs and miRNAs. Our study provides a comprehensive understanding of the StBTB gene family in potato, laying the groundwork for further functional characterization and manipulation of these genes to improve stress tolerance and agricultural productivity in potato and related plant species.

Funder

Department of Biotechnology (DBT), India

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3