Study and Experiment on Screen Surface Homogenization Technology of Dislodged Material Based on Longitudinal Flow Threshing

Author:

Ming Jiarui1,He Qinghao1,Yue Dong1,Ma Jie1,Wang Yanan1,Yin Jianning1,Cui Yipeng1,Geng Duanyang1

Affiliation:

1. College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255200, China

Abstract

Aiming at the problems of uneven distribution of dislodged material on the screen surface of longitudinal axial flow grain combine harvester, a large difference in material clearing time, and large clearing loss, a dislodged material homogenizing device that can realize dislodged material return and homogenization at the rear of longitudinal axial flow was developed. (1) The structure and motion parameters of the reflux plate were determined, and simulation tests were carried out to verify them; (2) A test bench was set up, and the Box-Behnken test method was adopted to determine the influence law of each factor on the operating effect and the optimal parameter combination, and the results showed that the tilt angle of the return plate, motor speed, and amplitude had a significant influence on the distribution uniformity of the material on the screen surface; it was determined that the optimal combination of the angle of the return plate configuration was 28.7°, the speed of the motor was 247 r/min, the amplitude of the return plate was 18.3 mm, and the seed contamination rate was 0.48%. The optimum combination was determined to be 28.7°, 247 r/min, 18.3 mm, and 0.48% impurity rate; (3) under the conditions of the field test validation, the validation error is less than 5%, proving that it can effectively improve the performance of the clearing and reduce the rate of impurity content.

Funder

Natural Science Foundation of Shandong Province 623

national key research and development plan 624

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3