Establishing a Hyperspectral Model for the Chlorophyll and Crude Protein Content in Alpine Meadows Using a Backward Feature Elimination Method

Author:

Ji Tong12ORCID,Liu Xiaoni12

Affiliation:

1. College of Pratacultural Science, Gansu Agricultural University, Lanzhou 730070, China

2. Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China

Abstract

(1) Background: The effective selection of hyperspectral feature bands is pivotal in monitoring the nutritional status of intricate alpine grasslands on the Qinghai–Tibet Plateau. The traditional methods often employ hierarchical screening of multiple feature indicators, but their universal applicability suffers due to the use of a consistent methodology across diverse environmental contexts. To remedy this, a backward feature elimination (BFE) selection method has been proposed to assess indicator importance and stability. (2) Methods: As research indicators, the crude protein (CP) and chlorophyll (Chl) contents in degraded grasslands on the Qinghai–Tibet Plateau were selected. The BFE method was integrated with partial least squares regression (PLS), random forest (RF) regression, and tree-based regression (TBR) to develop CP and Chl inversion models. The study delved into the significance and consistency of the forage quality indicator bands. Subsequently, a path analysis framework (PLS-PM) was constructed to analyze the influence of grassland community indicators on SpecChl and SpecCP. (3) Results: The implementation of the BFE method notably enhanced the prediction accuracy, with ΔR2RF-Chl = 56% and ΔR2RF-CP = 57%. Notably, spectral bands at 535 nm and 2091 nm emerged as pivotal for CP prediction, while vegetation indices like the PRI and mNDVI were critical for Chl estimation. The goodness of fit for the PLS-PM stood at 0.70, indicating the positive impact of environmental factors such as grassland cover on SpecChl and SpecCP prediction (rChl = 0.73, rCP = 0.39). SpecChl reflected information pertaining to photosynthetic nitrogen associated with photosynthesis (r = 0.80). (4) Disscusion: Among the applied model methods, the BFE+RF method is excellent in periodically discarding variables with the smallest absolute coefficient values. This variable screening method not only significantly reduces data dimensionality, but also gives the best balance between model accuracy and variables, making it possible to significantly improve model prediction accuracy. In the PLS-PM analysis, it was shown that different coverage and different community structures and functions affect the estimation of SpecCP and SpecChl. In addition, SpecChl has a positive effect on the estimation of SpecCP (r = 0.80), indicating that chlorophyll does reflect photosynthetic nitrogen information related to photosynthesis, but it is still difficult to obtain non-photosynthetic and compound nitrogen information. (5) Conclusions: The application of the BFE + RF method to monitoring the nutritional status of complex alpine grasslands demonstrates feasibility. The BFE filtration process, focusing on importance and stability, bolsters the system’s generalizability, resilience, and versatility. A key research avenue for enhancing the precision of CP monitoring lies in extracting non-photosynthetic nitrogen information.

Funder

College of Pratacultural Science, Gansu Agricultural University, including Gansu Province Grassland Monitoring and Evaluation

2021 Forestry and Grassland Science and Technology Project at the Provincial Level—Spatial Distribution and Carbon Storage Estimation of Grassland Soil Carbon Density in the Hexi Desert Area

New Round of Grassland Subsidy and Reward Benefits Evaluation and Grassland Ecological Evaluation Research in Gansu Province

National Natural Science Foundation of China

Publisher

MDPI AG

Reference64 articles.

1. Grassland for agriculture and nature conservation: Production, quality and multi-functionality;Hopkins;Agron. Res.,2006

2. Grassland ecosystems in China: Review of current knowledge and research advancement;Kang;Philos. Trans. R. Soc. B Biol. Sci.,2007

3. Alpine Grassland Degradation and Its Restoration in the Qinghai–Tibet Plateau;Zhou;Grasses,2023

4. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau;Li;Sci. Total Environ.,2019

5. Rangeland degradation on the Qinghai-Tibet plateau: Implications for rehabilitation;Li;Land Degrad. Dev.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3