Fine-Grained Detection Model Based on Attention Mechanism and Multi-Scale Feature Fusion for Cocoon Sorting

Author:

Zheng Han1ORCID,Guo Xueqiang23,Ma Yuejia2,Zeng Xiaoxi2,Chen Jun1,Zhang Taohong23

Affiliation:

1. Key Laboratory of AI and Information Processing, Education Department of Guangxi Zhuang Autonomous Region, Hechi University, Hechi 546300, China

2. Department of Computer, School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing 100083, China

3. Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China

Abstract

Sorting unreelable inferior cocoons during the reeling process is essential for obtaining high-quality silk products. At present, silk reeling enterprises mainly rely on manual sorting, which is inefficient and labor-intensive. Automated sorting based on machine vision and sorting robots is a promising alternative. However, the accuracy and computational complexity of object detection are challenges for the practical application of automatic sorting, especially for small stains of inferior cocoons in images of densely distributed cocoons. To deal with this problem, an efficient fine-grained object detection network based on attention mechanism and multi-scale feature fusion, called AMMF-Net, is proposed for inferior silkworm cocoon recognition. In this model, fine-grained object features are key considerations to improve the detection accuracy. To efficiently extract fine-grained features of silkworm cocoon images, we designed an efficient hybrid feature extraction network (HFE-Net) that combines depth-wise separable convolution and Transformer as the backbone. It captures local and global information to extract fine-grained features of inferior silkworm cocoon images, improving the representation ability of the network. An efficient multi-scale feature fusion module (EMFF) is proposed as the neck of the object detection structure. It improves the typical down-sampling method of multi-scale feature fusion to avoid the loss of key information and achieve better performance. Our method is trained and evaluated on a dataset collected from multiple inferior cocoons. Extensive experiments validated the effectiveness and generalization performance of the HFE-Net network and the EMFF module, and the proposed AMMF-Net achieved the best detection results compared to other popular deep neural networks.

Funder

National Study Abroad Fund of China and Key Laboratory of AI and Information Processing

Education Department of Guangxi Zhuang Autonomous Region

2023 Basic Research Ability Enhancement Project for Young and Middle age Teachers in Universities of Guangxi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3