Affiliation:
1. Aerospace Information Research Institute, Henan Academy of Sciences, Zhengzhou 450046, China
2. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China
3. School of Economics & Management, Northwest University, Xi’an 710127, China
Abstract
Crop growth parameters are the basis for evaluation of crop growth status and crop yield. The aim of this study was to develop a more accurate estimation model for corn growth parameters combined with multispectral vegetation indexes (VIopt) and the differential radar information (DRI) derived from SAR data. Targeting the estimation of corn plant height (H) and the BBCH (Biologische Bundesanstalt, Bundessortenamt and CHemical industry) phenological parameters, this study compared the estimation accuracies of various multispectral vegetation indexes (VIopt) and the corresponding VIDRI (vegetation index corrected by DRI) indexes in inverting the corn growth parameters. (1) When comparing the estimation accuracies of four multispectral vegetation indexes (NDVI, NDVIre1, NDVIre2, and S2REP), NDVI showed the lowest estimation accuracy, with a normalized root mean square error (nRMSE) of 20.84% for the plant height, while S2REP showed the highest estimation accuracy (nRMSE = 16.05%). In addition, NDVIre2 (nRMSE = 16.18%) and S2REP (16.05%) exhibited a higher accuracy than NDVIre1 (nRMSE = 19.27%). Similarly, for BBCH, the nRMSEs of the four indexes were 24.17%, 22.49%, 17.04% and 16.60%, respectively. This confirmed that the multispectral vegetation indexes based on the red-edge bands were more sensitive to the growth parameters, especially for the Sentinel-2 red-edge 2 band. (2) The constructed VIDRI indexes were more beneficial than the VIopt indexes in enhancing the estimation accuracy of corn growth parameters. Specifically, the nRMSEs of the four VIDRI indexes (NDVIDRI, NDVIre1DRI, NDVIre2DRI, and S2REPDRI) decreased to 19.64%, 18.11%, 15.00%, and 14.64% for plant height, and to 23.24%, 21.58%, 15.79%, and 15.91% for BBCH, indicating that even in cases of high vegetation coverage, the introduction of SAR DRI features can further improve the estimation accuracy of growth parameters. Our findings also demonstrated that the NDVIre2DRI and S2REPDRI indexes constructed using red-edge 2 band information of Sentinel-2 and SAR DRI features had more advantages in improving the estimation accuracy of corn growth parameters.
Funder
Scientific Research Foundation of the Henan Academy of Sciences
Scientific Research Foundation for High-End Talents of the Henan Academy of Sciences
Basic Foundation for Scientific Research of the Henan Academy of Sciences
Key R&D projects in Hubei Province